3.236 \(\int \frac{(g x)^m}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx\)

Optimal. Leaf size=80 \[ \frac{\sqrt{1-\frac{e^2 x^2}{d^2}} (g x)^{m+1} \, _2F_1\left (\frac{7}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{d^6 g (m+1) \sqrt{d^2-e^2 x^2}} \]

[Out]

((g*x)^(1 + m)*Sqrt[1 - (e^2*x^2)/d^2]*Hypergeometric2F1[7/2, (1 + m)/2, (3 + m)
/2, (e^2*x^2)/d^2])/(d^6*g*(1 + m)*Sqrt[d^2 - e^2*x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.0725677, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091 \[ \frac{\sqrt{1-\frac{e^2 x^2}{d^2}} (g x)^{m+1} \, _2F_1\left (\frac{7}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{d^6 g (m+1) \sqrt{d^2-e^2 x^2}} \]

Antiderivative was successfully verified.

[In]  Int[(g*x)^m/(d^2 - e^2*x^2)^(7/2),x]

[Out]

((g*x)^(1 + m)*Sqrt[1 - (e^2*x^2)/d^2]*Hypergeometric2F1[7/2, (1 + m)/2, (3 + m)
/2, (e^2*x^2)/d^2])/(d^6*g*(1 + m)*Sqrt[d^2 - e^2*x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 11.5775, size = 66, normalized size = 0.82 \[ \frac{\left (g x\right )^{m + 1} \sqrt{d^{2} - e^{2} x^{2}}{{}_{2}F_{1}\left (\begin{matrix} \frac{7}{2}, \frac{m}{2} + \frac{1}{2} \\ \frac{m}{2} + \frac{3}{2} \end{matrix}\middle |{\frac{e^{2} x^{2}}{d^{2}}} \right )}}{d^{8} g \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}} \left (m + 1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((g*x)**m/(-e**2*x**2+d**2)**(7/2),x)

[Out]

(g*x)**(m + 1)*sqrt(d**2 - e**2*x**2)*hyper((7/2, m/2 + 1/2), (m/2 + 3/2,), e**2
*x**2/d**2)/(d**8*g*sqrt(1 - e**2*x**2/d**2)*(m + 1))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0417155, size = 76, normalized size = 0.95 \[ \frac{x \sqrt{1-\frac{e^2 x^2}{d^2}} (g x)^m \, _2F_1\left (\frac{7}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{d^6 (m+1) \sqrt{d^2-e^2 x^2}} \]

Antiderivative was successfully verified.

[In]  Integrate[(g*x)^m/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(x*(g*x)^m*Sqrt[1 - (e^2*x^2)/d^2]*Hypergeometric2F1[7/2, (1 + m)/2, (3 + m)/2,
(e^2*x^2)/d^2])/(d^6*(1 + m)*Sqrt[d^2 - e^2*x^2])

_______________________________________________________________________________________

Maple [F]  time = 0.029, size = 0, normalized size = 0. \[ \int{ \left ( gx \right ) ^{m} \left ( -{e}^{2}{x}^{2}+{d}^{2} \right ) ^{-{\frac{7}{2}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((g*x)^m/(-e^2*x^2+d^2)^(7/2),x)

[Out]

int((g*x)^m/(-e^2*x^2+d^2)^(7/2),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (g x\right )^{m}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((g*x)^m/(-e^2*x^2 + d^2)^(7/2),x, algorithm="maxima")

[Out]

integrate((g*x)^m/(-e^2*x^2 + d^2)^(7/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (-\frac{\left (g x\right )^{m}}{{\left (e^{6} x^{6} - 3 \, d^{2} e^{4} x^{4} + 3 \, d^{4} e^{2} x^{2} - d^{6}\right )} \sqrt{-e^{2} x^{2} + d^{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((g*x)^m/(-e^2*x^2 + d^2)^(7/2),x, algorithm="fricas")

[Out]

integral(-(g*x)^m/((e^6*x^6 - 3*d^2*e^4*x^4 + 3*d^4*e^2*x^2 - d^6)*sqrt(-e^2*x^2
 + d^2)), x)

_______________________________________________________________________________________

Sympy [A]  time = 155.627, size = 60, normalized size = 0.75 \[ \frac{g^{m} x x^{m} \Gamma \left (\frac{m}{2} + \frac{1}{2}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{7}{2}, \frac{m}{2} + \frac{1}{2} \\ \frac{m}{2} + \frac{3}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 d^{7} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((g*x)**m/(-e**2*x**2+d**2)**(7/2),x)

[Out]

g**m*x*x**m*gamma(m/2 + 1/2)*hyper((7/2, m/2 + 1/2), (m/2 + 3/2,), e**2*x**2*exp
_polar(2*I*pi)/d**2)/(2*d**7*gamma(m/2 + 3/2))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (g x\right )^{m}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((g*x)^m/(-e^2*x^2 + d^2)^(7/2),x, algorithm="giac")

[Out]

integrate((g*x)^m/(-e^2*x^2 + d^2)^(7/2), x)